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This paper deals with the mathematical study of the problem of small oscillations of a liquid
bridge with a free surface, held together by surface tension between two elastic coaxial circular
disks considered as membranes, under zero gravity, in the case of a catenoidal liquid bridge in
the equilibrium position. The equations, which give the reciprocal displacements of the free
surface and of the membranes, are reduced to a variational equation. The existence of the
eigenfrequencies depends on the coerciveness of the bilinear form which appears in this
equation. It is shown that these eigenfrequencies exist under two simple conditions involving
the ratio between the distance of the planes of the disks and the tensions of the membranes.
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1. INTRODUCTION

SINCE THE BEGINNING of research into hydroelasticity under microgravity conditions, the
behaviour of liquid bridges between two generally circular coaxial disks has been extensive-
ly studied. This interest is due, in particular, to the applications of this geometry to crystal
growth from floating zones. A very good survey of this research can be found in the paper of
Sanz (1992).

In fabrication processes under microgravity conditions, such as crystal growth, the
oscillations of the free liquid surface is often of detrimental effect on the products. These
oscillations are excited by the vibrations of the supporting disks. Consequently, it is
important to study the effects of the elasticity of the disks.

The mathematical problem of the stability and of the small oscillations of an inviscid
incompressible fluid mass in a container under zero gravity has been treated in the books by
Moiseyev & Rumiantsev (1968), Myskhis et al. (1987) and Kopachevskii et al. (1989) by
means of the methods of functional analysis.

It is well-known that, in an equilibrium position, the liquid-free surface is a surface with
constant mean curvature. It is possible to determine analytically and geometrically these
surfaces, if they are surfaces of revolution (Delaunay 1841). In particular, if the mean
curvature is zero (minimum surface), we obtain a catenoid.

Using a method which is different from the method of the Russian scientists cited, the
author has studied the small oscillations of a catenoidal bridge between two rigid parallel
plates in two cases: (i) with the contact angles constant and equal (Capodanno 1994); and (ii)
with the edges anchored (Capodanno 1995).
0889-9746/98/020197#17 $25.00/fl970129 ( 1998 Academic Press Limited
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In this paper, in order to take into account the vibrations of the supporting disks, the
mathematical problem of the small oscillations of a catenoidal liquid bridge under zero
gravity with a free surface, held together by a constant surface tension between two elastic
coaxial circular disks considered as membranes, is studied.

The equations, which give the displacements of the free surface and of the membranes, are
reduced to a variational equation. The existence of the eigenfrequencies of the system
depends essentially on the coerciveness of the bilinear form which appears in this equation.
This problem can be reduced to another eigenvalue problem, and it can be shown that the
form is coercive if the smallest eigenvalue is strictly greater than one. After a long and
careful discussion, it is possible to prove the existence of the eigenfrequencies of the system if
two simple inequalities are satisfied, which express that the ratio between the distance of the
centres of the disks and the neck radius of the catenoid must be sufficiently small and the
tensions of the membranes sufficiently great.

2. FORMULATION

We consider a liquid bridge between two elastic equal coaxial disks S
1

and S
2
, the edges of

which are the equal circles C
1

and C
2
, considered as membranes, in the case where the free

surface of the liquid in the equilibrium position S
0
is a catenoid, the membranes being in the

planes of the disks.
Figure 1. (a) The system under consideration; (b) the deformed system. Definitions of the coordinate system
used and some key notations: S

0
free surface; S

1
, S

2
membranes with boundaries C

1
and C

2
; f, f

1
are the

displcements of the free surface and the membranes.



OSCILLATIONS OF LIQUID BRIDGE IN ZERO GRAVITY 199
We use an orthogonal coordinate system Oxyz, Oz being the axis of revolution of the
catenoid. The equations of the planes of C

1
and C

2
are, respectively, z"h and z"!h; a is

the neck radius of the catenoid (Figure 1).
We introduce, instead of the cylindrical coordinates r, h, z, the coordinates r, s"ah, z.

The equation of S
0

is r"a ch(z/a), the constant volume of the liquid is
na2 [h#1

2
a sh(2h/a)] and the element of the surface is dS

0
"ch2 (z/a) dz ds, and sh and ch

are abbreviations for sinh and cosh.
The equations of the perturbed free surface S and of the membranes are

r"a ch(z/a)#f(z, s, t) z"h#f
1
(r, s, t), z"!h#f

2
(r, s, t), (1)

where f, f
1
, f

2
are periodic with respect to s with period 2na; they as well as their derivatives

are considered to be small.
These functions must obviously satisfy the boundary conditions

f($h, s, t)"0; f
1
(a, ch(h/a), s, t)"0; f

2
(a ch(h/a), s, t)"0. (2)

We must and the condition which expresses that the volume of the liquid is constant:

P
S0

f
ch(z/a)

dS
0
#P

S1

f
1

dS
1
!P

S2

f
2

dS
2
"0, (3)

the normal displacement of the free surface being f/ch(z/a).

3. EQUATIONS OF THE PROBLEM

Assuming that the liquid is inviscid and incompressible and its motion is irrotational, we
denote by / (r, s, z, t) the velocity potential. We have

D/"0 in q, (4)

where D is the Laplace operator and q the volume occupied by the liquid in its equilibrium
position. / must also satisfy the kinematic conditions

L/
Ln

"

fQ
ch(z/a)

on S
0
, (5)

L/

Ln
"fQ

1
on S

1
, (6)

L/
Ln

"!fQ
2

on S
2
, (7)

where L ( )/Ln is the external normal derivative and the dot indicates derivative with respect
to time.

Let us denote by p
0

the constant external pressure and by p the pressure in the liquid. We
obtain the first two dynamic conditions by writing the equations of motion of the mem-
branes. If o

1
(resp. o

2
) (in kg/m2) and ¹

1
(resp. ¹

2
) (in N/m) are the constant density and the

constant tension of S
1

(resp. S
2
), we have

o
1
f®
1
"¹

1
Df

1
#p!p

0
, (8)

o
2
f®
2
"¹

2
Df

2
#p

0
!p, (9)
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where the pressure p (in N/m2) is calculated on S
1

and S
2
, respectively. The dynamic

condition on the free surface is given by the Laplace law (Landau & Lifschitz 1963;
pp. 230—232);

p!p
0
"!a A

1

R
1

#

1

R
2
B, (10)

where a (in N/m) is the surface tension, which we suppose constant, and R
1

and R
2

are the
principal radii of curvature of the perturbed free surface, regarded as negative when the
centre of curvature lies on the same side of the surface as the fluid.

It is easy to calculate the mean curvature of S, keeping only first-order terms with respect
to f and its derivatives, by using the general formula (Blaschke 1930); we obtain

1

R
1

#

1

R
2

"

1

a ch2 (z/a) G
f

a ch(z/a)
#chA

z

aB
L
Lz C

af
z

ch2(z/a)D#
af

ss
ch(z/a)H,

where f
z
"(Lf/dz), f

ss
"(L2f/Ls2).

Using the linearized Bernoulli formula for the pressure

p"!o (L//Lt)#C(t),

we can replace equations (8)—(10) by

o
L/

Lt K
S0

!

a
a ch2(z/a) G

f
a ch(z/a)

#chA
z

aB
L
Lz C

af
z

ch2(z/a)D#
af

ss
ch(z/a)H"C(t)!p

0
, (11)

o
1
f®
1
"¹

1
Df

2
!o

L/

Lt K
z/h

!p
2
#C(t), (12)

o
2
f®
2
"¹

2
Df

2
#o

L/

Lt K
z/~h

#p
0
!C(t), (13)

where o (in kg/m3) is the density of the liquid and C(t) an arbitrary function of time. To
these, we must obviously add conditions (2) and (3).

In the following we introduce the space ¸2 and the Sobolev space H1 and H1
0
, the definition

and the properties of which can be found in Kopachevskii et al. (1989; pp. 8 and 26—32) and
Sanchez & Sanchez (1989; pp. 30, 31).

4. VARIATIONAL EQUATION OF THE PROBLEM

We introduce the auxiliary Neumann problem

D/"0 in q;
L/
Ln

"

g
0

ch(z/a)
on S

0
;

L/

Ln
"g

1
on S

1
;

L/

Ln
"g

2
on S

2
;

with the compatibility condition

P
S0

g
0

ch(z/a)
dS

0
#P

S1

g
1

dS
1
#P

S2

g
2

dS
2
"0. (14)
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We denote by H the subspace of L"¸2(S
0
)]¸2(S

1
)]¸2(S

2
), the elements

g"Mg
0
, g

1
, g

2
N of which satisfy condition (14) and we equip H with the scalar product

( f, g)H"P
S0

f
0
g
0

ch(z/a)
dS

0
#P

S1

f
1
g
1

dS
1
#P

S2

f
2
g
2

dS
2
;

the associated norm E )EH is obviously equivalent to the classical norm of L.
It is well known that, for any g3H, it is possible to find one and only one function /:

/3HI 1(q)"G/3H1(q); P
S0

/ D
S0

ch(z/a)
dS

0
#P

S1

/ D
S1

dS
1
#P

S2

/ D
S2

dS
2
"0H,

a weak solution of the Neumann problem, which satisfies

Pq D/ Dt dq"P
S0

g
0
tD

S0
ch(z/a)

dS
0
#P

S1

g
1
tD

S1
dS

1
#P

S2

g
2
tD

S2
dS

2
, ∀t3HI 1(q). (15)

The traces / D
S0

, / D
S1

, / D
S2

of / on S
0
, S

1
, S

2
belong to ¸2 (S

0
), ¸2(S

1
), ¸2(S

2
), respectively,

and verify condition (14). Consequently, we can introduce a linear operator K of H into
H defined by

M/ D
S0

, / D
S1

, / D
S2

N"KMg
0
, g

1
, g

2
N. (16)

It is well known that this operator is self-adjoint, positive definite and compact (Friedmann
& Shinbrot 1972).

We write equation (16) in the form

G
/ D

S0
/ D

S1
/ D

S2
H"

K
00

K
01

K
02

K
10

K
11

K
12

K
20

K
21

K
22

G
g
0

g
1

g
2
H,

where K
ij

are operators from ¸2(S
i
) into ¸2(S

j
) (i, j"1, 2, 3), so that

(Kf, g)H"P
S0

(K
00

f
0
#K

01
f
1
#K

02
f
2
)

g
0

ch(z/a)
dS

0

#P
S1

(K
10

f
0
#K

11
f
1
#K

12
f
2
)g

1
dS

1

#P
S2

(K
20

f
0
#K

21
f
1
#K

22
f
2
) g

2
dS

2
.

Since by virtue of equations (4)—(7), the velocity potential / satisfies the Neumann problem
with g

0
"fQ , g

1
"fQ

1
, g

2
"!fQ

2
, we can write equations (11), (12) and (13) in the form

o (K
00

f® #K
01

f®
1
!K

02
f®
2
)

!

a
ch2 (z/a) C

f
a ch(z/a)

#chA
z

aB
L
Lz A

af
z

ch(z/a)B#
af

ss
ch(z/a)H"C(t)!p

0
,

o (K
10

f® #K
11

f®
1
!K

12
f®
2
)#o

1
f®
1
!¹

1
Df

1
"C(t)!p

0
,

o (K
20

f® #K
21

f®
1
!K

22
f®
2
)!o

2
f®
2
#¹

2
Df

2
"C(t)!p

0
.
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Multiplying these equations, respectively, by fI /ch(z/a), fI
1
, !fI

2
, where fI , fI

1
, !fI

2
satisfy

condition (2) and (14), integrating on S
0
, S

1
, S

2
, adding, taking into account condition (14)

and setting

m"(f, f
1
, !f

2
), mI "(fI , fI

1
, !fI

2
),

we obtain the equation

o (Km® , mI )H#o
1P

S1

f®
1
fI
1

dS
1
#o

2 P
S2

f®
2
fI
2

dS
2
!¹

1P
S1

Df
1

fI
1

dS
1
!¹

2P
S2

Df
2

fI
2

dS
2

"!a P
S0

1

a ch2(z/a) C
f

a ch(z/a)
#chA

z

aB
L
Lz C

af
z

ch2(z/a)D#
af

ss
ch(z/a)H fI dS

0
.

The Green formula gives, taking into account equation (2),

P
Si

Df
i
f3
i
dS

i
"P

Si

$f
i
·$fI

i
dS

i
, i"1, 2,

where D and $ are here the classical symbols L2/Lx2#(L2/Ly2) and xL/Lx#y(L/Ly), x and
y being the unit vectors of the axes Ox, Oy.

Introducing, instead of S
0

the domain X defined by 0(s(2n
a
, !h(z(h, and

integrating by parts, we obtain easily, using condition (2) and the periodicity of f and fI , for
the coefficient of a the bilinear form

m(f, fI )"PX

f
s
f3
s
#f

z
f3
z

ch2 (z/a)
dz ds!

1

a2 PX

ff3
ch2(z/a)

dz ds. (17)

In the following, we denote by M(m, mI ) the bilinear form defined by

aM(m, m3 )"am(f, f3 )#¹
1 P

S1

$f
1 ·$fI

1
dS

1
#¹

2 P
S2

$f
2 · $fI

2
dS

2
. (18)

We set

V"H1(S
0
)]H1(S

1
)]H2(S

2
), »

0
"H1

0
(S

0
)]H1

0
(S

1
)]H1

0
(S

2
)

and introduce the space

»"Gg"Mg
0
, g

1
, g

2
N3»

0
; P

S0

g
0

ch(z/a)
dS

0
#P

S1

g
1

dS
1
#P

S2

g
2

dS
2
"0H,

equipped with the classical scalar product of V, denote by (. , . )V; H"completion of » for
the norm associated to the scalar product

( f, g)H"o (Kf, g)H#o
1 P

S1

f
1
g
1

dS
1
#o

2 P
S2

f
2
g
2

dS
2
.

Then, we obtain the variational formulation of the problem: To find m(t)3» such that

(m® , mI )
H
#aM(m, mI )"0, ∀mI 3». (19)

It is easy to prove that aM(m, m) is the potential energy of the system. Indeed, at first, the
¹

i
:
S
($f

i
)2 dS

i
(i"1, 2) are the potential energies of the membranes; on the other hand, the
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potential energy P of the surface tension forces is given by the formula (Moiseyev
& Rumiantsev 1968)

dP

dt
"a P

S0
A

1

R
1

#

1

R
2
B fQ dS

0
.

Using the expression of the mean curvature of S and performing the integrations by parts
which have led to equation (17), we obtain easily

P"am(f, f),

and the assertion is proved.
Then, by Rumiantsev theorem (Moiseyev & Rumiantsev 1968), the equilibrium position

of the system is stable if the bilinear form M( . , . ) is coercive on », i.e. if there exists a positive
constant c such that M(m, m)7cEmE2V ∀m3» (Panagiotopoulos 1985).

Consequently, it is necessary to study the coerciveness of the bilinear form M( . , . ).

5. STUDY OF THE BILINEAR FORM M ( . , . )

In order to study the coerciveness of this form, we seek

inf
m|V

PX

f2
s
#f2

z
ch2(z/z)

dz ds#
¹

1
a P

S1

($f
1
)2 dS

1
#

¹
2

a P
S2

($f
2
)2 dS

2

PX

f2
a2 ch2 (z/a)

dz ds

.

This greater lower bound j exists and is positive or zero. We are going to study it by
a method which can be found in Roseau (1987); see also Riesz & Nagy (1968; pp. 244—248).

It is well known that there exists a sequence Mm
n
N"Mf

n
, f

1n
, !f

2n
N3», such that

j" lim
n?=

PX

f2
ns
#f2

nz
ch2(z/a)

dz ds#
¹

1
a P

S1

($f
1n

)2 dS
1
#

¹
2

a P
S2

($f
2n

)2 dS
2

PX

f2
n

a2 ch2(z/a)
dz ds

.

By homogeneity, we may suppose the denominator to be equal to one. Then, since the
square roots of the terms of the numerator are norms in H1

0
(S

0
), H1

0
(S

1
), H1

0
(S

2
), the

sequence Mm
n
N is bounded in »

0
and it is possible to find a subsequence, denoted again by

Mm
n
N, which converges weakly in »

0
and strongly inL to a limit R"Mp, p

1
,!p

2
N. It is easy

to see that :X p2/a2 ch2 (z/a) dz ds"1 and the R satisfies condition (14).
Let us prove that

j"
PX

p2
s
#p2

z
ch2(z/a)

dz ds#
¹

1
a P

S1

($p
1
)2 dS

1
#

¹
2

a P
S2

($p
2
)2 dS

2

PX

p2

a2 ch2 (z/a)
dz ds

.
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By the definition of j, the ratio is greater than or equal to j. We are going to prove that it is
smaller than j. We have easily that

PX

f2
ns
#f2

nz
ch2(z/a)

dz ds#
¹

1
a P

S1

($f
1n

)2 dS
1
#

¹
2

a P
S2

($f
2n

)2 dS
2

*PX

p2
s
#p2

z
ch2(z/a)

dz ds#
¹

1
a P

S1

($p
1
)2 dS

1
#

¹
2

a P
S2

($p
2
)2 dS

2

#2 GPX

(f
ns
!p

s
)p

s
#(f

nz
!p

z
)p

z
ch2(z/a)

dz ds#
¹

1
a P

S1

$ (f
1n
!p

1
) ·$p

1
dS

1

#

¹
2

a P
S1

$(f
2n
!p

2
) ·$p

2
dS

2H. (20)

The bilinear form

MK (º, ºI )"PX

u
s
uJ
s
#v

s
vJ
s

ch2(z/a)
dz ds#

¹
1

a P
S1

$u
1 ·$uJ

1
dS

1
#

¹
2

a P
S2

$u
2 · $uJ

2
dS

2
,

with º"Mu, u
1
, !u

2
N, ºI "MuJ , uJ

1
,!uJ

2
N is bounded in V; then, there exists an operator

A from V into V such that

MK (º, ºI )"(º,AºI )V.

Consequently, the term between braces in equation (20) is (m
n
!R,AR)V, and it converges

to zero, since the sequence Mm
n
N converges weakly to R in V. The assertion is proved by

taking nPR in inequality (20).
It is noted that j is different from zero. Indeed, if j"0, R is constant and this constant is

zero by virtue of condition (14), and it is in contradiction with :X p2/a2 ch2(z/a) dz ds"1.
By the definition of j, we have the inequality

PX

f2
s
#f2

z
ch2(z/a)

dz ds#
¹

1
a P

S1

($f
1
)2 dS

1
#

¹
2

a P
S2

($f
2
)2 dS

2
!j PX

f2
a2 ch2 (z/a)

dz ds*0

for any m3». Setting m"R#e dm, e3R, and carrying out in the preceding inequality
which must be verified for any e3R, we obtain

PX

f
s
df

s
#f

z
df

z
ch2 (z/a)

dz ds#
¹

1
a P

S1

$f
1 ·$ (df

1
) dS

1

#

¹
2

a P
S2

$f
2 ·$ (df

2
) dS

2
!j PX

f df
a2 ch2(z/a)

dz ds"0

for any dm3». Introducing a multiplier k associated in condition (14), we replace this
equation by

PX

f
s
df

s
#f

z
df

z
ch2(z/a)

dz ds#
¹

1
a P

S1

$f
1 · $(df

1
) dS

1
#

¹
2

a P
S2

$f
2 ·$ (df

2
) dS

2

!j PX

f df
a2 ch2(z/a)

dz ds!k CPX

ch(z/a) df dz ds#P
S1

df
1

dS
1
!P

S2

df
2

dS
2D"0
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for any dm3»
0
. Taking f3D(S

0
), f

1
3D (S

1
), f

2
3D(S

2
) we obtain

f
ss

ch2(z/a)
#

f
Lz C

f
z

ch2 (z/a)D#j
f

a2 ch2(z/a)
#k ch(z/a)"0 on S

0
, (21)

Df
1
"!

ka
¹

1

on S
1
, (22)

Df
2
"

ka
¹

2

on S
2
, (23)

in the distributed sense. However, by virtue of Schwartz’s theorem for elliptic equations, we
have f, f

1
, f

2
3C=.

We must obviously add to this conditions (2) and the periodicity conditions.
The solutions of equations (22) and (23) with f

1
"0 on C

1
and f

2
"0 on C

2
are

f
1
"!

ka
4¹

1
Cr2!a2 ch2

h

aD, f
2
"

ka
4¹

2
Cr2!a2 ch2

h

aD;
Condition (14) gives

PX

f ch A
z

aB dz ds"P
S2

f
2

dS
2
!P

S1

f
1

dS
1
"!k

naa4 ch4(h/a)

8 A
1

¹
1

#

1

¹
2
B.

Setting

K
0
"

8

naa4 ch4 A
h

aB A
1

¹
1

#

1

¹
2
B
'0,

we have

k"!K
0 PX

f ch(z/a) dz ds.

Finally, the problem is reduced to following eigenvalue problem:

f
ss

ch2(z/a)
#

L
Lz C

f
2

ch2(z/a)D#j
f

a2 ch2(z/a)
!K

0
chA

z

aBPX

f chA
z

aB dz ds"0,

f($h, s)"0; H (24)

f is the classical solution of the problem, and it is periodic with respect to s, with period 2na.
In order to solve problem (24), we seek solutions in the form

f"S (s)Z(z)

and hence obtain

S
ss
Z

ch2(z/a)
#S

d

dz C
Z

z
ch2 (z/a)

#

jSZ

a2 ch2(z/a)
!K

0
chA

z

aB P
2na

0

S (s) ds P
h

~h

Z(z) chA
z

aB dz"0,

S(s) with the period 2na, Z($h)"0.
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Integrating with respect to s between 0 and 2na and taking into account the periodicity,
we obtain

P
2na

0

S (s) dsG
d

dz C
Z

s
ch2 (z/a)D#

jZ

a2 ch2(z/a)
!2naK

0
chA

z

aB P
h

~h

Z(z) chA
z

aB dzH"0.

We must distinguish between the following two cases.
Case (a) for which

P
2na

0

S(s) ds"0.

In this case, we have

!

S
ss
S
"

d

dz C
Z

z
ch2(z/a)D#

jZ

a2 ch2 (z/a)

Z

ch2(z/a)

"constant.

We obtain

S
n
(s)"A

n
cosA

n

a
sB#B

n
sinA

n

a
sB; A

n
, B

n
constant;

and
d

dz C
Z

z
ch2(z/a)D#

j!n2

a2 ch2(z/a)
z"0,

Z($h)"0; n"1, 2, 3,2
H (25)

Problem (25) for Z(z) is a classical Strum—Liouville problem (Courant & Hilbert 1965). For
each value of n"1, 2,2, we have a sequence of eigen-values, j

n1
, j

n2
,2, j

nm
,2, strictly

greater than n2, and, hence strictly greater than one. On the other hand, for each n, the
eigenfunctions Z

nm
form an orthogonal basis in the space Ķ 2(!h, h), the space of the

functions Z3¸2(!h, h) equipped with the scalar product

(Z, ZK ) I̧ 2"P
h

~h

ZZK
a2 ch2(z/a)

dz.

Case (b) for which

d

dz C
Z

z
ch2 (z/a)D#

jZ

a2 ch2(z/a)
!2naK

0
chA

z

aB P
h

~h

Z(z) chA
z

aB dz"0.

In this case, we can write the equation in the form

d2

ds2CS (s)!
1

2na P
2na

0

S (s) ds

S(s)!
1

2na P
2na

0

S (s) ds

"2naK
0

ch3A
z

aB
Z P

h

~h

Z(z) chA
z

aB dz"constant.
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It is possible only for S (s)!(1/2na) :2na
0

S (s) ds"0, and then, S (s)"constant. Setting

kJ "!2naK
0 P

h

~h

Z(z) chA
z

aB dz, (26)

We obtain the following problem for Z (z):

d

dz C
Z

z
ch2(z/a)D#

jZ

a2 ch2(z/a)
#kJ chA

z

aB"0,

Z($h)"0. H (27)

Multiplying equation (27) by ZK 3H1
0
(!h, h), and integrating in the interval (!h, h) we

obtain after an integration by parts

a(Z, ZK )"j (Z, ZK ) Ķ 2

with

a(Z, ZK )"P
h

~h

Z
z
ZK

z
ch2 (z/a)

dz#2na2K
0 P

h

~h

Z chA
z

aB dz P
h

~h

Z chA
z

aB dz.

The embedding H1
0
(!h, h)3 Ķ 2 (!h, h) is obviously continuous, dense and compact; the

bilinear form a (Z, ZK ) is symmetrical, continuous and coercive in H1
0
(!h, h) by virtue of

Poincaré’s inequality (Sanchez & Sanchez 1989); see also Velte (1976; pp. 59—64). Conse-
quently, equation (27) is a classical eigenvalue problem and its eigenfunctions form an
orthogonal basis in Ķ 2 (!h, h).

Considering problems (25) and (27), remarking that the functions 1, cos(ns/a), sin(ns/a),
(n"1, 2,2) form an orthogonal basis in ¸2(0, 2na) and using a classical theorem (Courant
& Hilbert 1965; Vol. 1, pp. 56, 57), we see that by method of separation of variables we
obtain all the eigenvalues and all the eigenfunctions of problem (24).

Let us now solve problem (27). Setting

x"
z

a
, ½"

z

ch x
, b"

h

a
, j"1!th2 u@,

we have the equivalent problem

y
xx
!(2 th2 x!2#th2 u@)y"!kLI ch2 x, k83 "a2kJ ,

y ($b)"0, H (28)

the general solution of which we can obtain explicitly. Indeed, the homogeneous equation is
a degenerate Lamé equation, and y"![kJI /(4!th2 u@)] ch2 x is a particular solution of the
complete equation.

We must distinguish the cases (i) u@ real and (ii) u@"iX@ with X@ real.
For u@ real, excluding u@"#R which gives j"0, we must consider two cases:

Subcase 1: u@"0, then j"1. The general solution of equation (28) is

y"A thx (x!coth x)#B thx!1 kJI ch2 x; A, B constants;

4
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the conditions y ($b)"0 give B"0, kJI "4A[sh b (b-coth b)/ch3 b], and consequently

Z(z)"A Csh
z

a A
z

a
!coth

z

aB!
sh b (b!coth b)

ch3 b
ch3

z

aD.
Substituting this expression into equation (26), we obtain after a few calculations the
equation

AG4 th b (b!coth b)#
na4K

0
2

[!3b2 thb#b (1!sh2b)(1!2 sh2b)

!sh b chb (1#4 sh2 b)]H"0; (29)

j"1 cannot be eigenvalue if the quantity between braces is not zero. The coefficient of
1
2

na4K
0

has been studied by Erle et al. (1970); its first positive root is b"2)23918 and it is
negative for 0(b(2)23918. On the other hand, b!coth b is positive (resp. negative) if
b'1)9997 (resp. (1)9997). Consequently, taking 0(b(2)23918, j"1 is impossible if
0(b(1)9997; or 1)9997(b(2)23918, and

na4K
0

2
O

4 th b (b!coth b)

3b2 thb!b (1!sh2b) (1!2 sh2 b)#sh b ch b (1#4 sh2 b)
.

Subcase 2: u@O0, OR; then 0(j(1. Now, the general solution of equation (28) is

y"A(th u@ ch x#sh x)e~x 5)u{#B (th u@ ch x!sh x)ex 5)u{!
kJI

4!th2u@
ch3 x.

At first, the conditions y ($b)"0 give

(A!B) [(th u@ ch b#sh b)e~b 5)u{!(th u@ ch b!sh b)eb 5)u{]"0.

The coefficient of A!B is different from zero, because, setting th u@"u, 0(u(1, it is
easy to see graphically that the equation e2bu"(u#th b)/(u!th b) has no roots. Conse-
quently, A"B and, as in subcase 1, we find

Z(z)"AGAthu@ ch
z

a
#sh

z

aB e~(z@a) 5)u{#Athu@ ch
z

a
!sh

z

aBe(z@a) 5)u{

!

(th u@ chb#sh b)e~b 5)u{#(th u@ ch b!shb)eb 5)u@
ch3b

ch3
z

aH.
Substituting into equation (24), we obtain an equation of the form

A [F(u@, b)#2na4K
0
FI (u@, b]"0.

There is no eigenvalue j between 0 and 1 if the coefficient of A is not zero. After some long
calculations and not obvious transformations, the equation F#2na4K

0
FI "0 can be

written, setting th u@"u, 0(u(1, as

Gb(u)"Hb (u), (30)
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with

Hb(u)"
9
2
[2#na4K

0
(1
4

sh 4b!b)]

u2!1
,

Gb (u)"
4na4K

0
ch4b

u/th(bu) th b
!(u2!1)![1

2
na4K

0
(3b#2 sh 2b#1

4
sh 4b)!6].

The function Hb(u) is strictly decreasing from !9
2
[2#na4K

0
(1
4

sh 4b!b)](0 to !R.
It is easy to see that the function Fb (u)"u/th(bu)!th b is strictly increasing, strictly

positive if 0(b(1)9997, and taking the value zero at some point u
0

if b'1)9997. Then
Gb (u) is strictly decreasing; besides, we have Gb (153

4
na4K

0
(sh 2b!2b)#656. Using the

graphs of functions Gb (u) and Hb(u), we easily obtain the following results:

if 0(b(1)9997, Gb(u) is positive and equation (20) has no root;
If 1)9997(b(2)23918, the equation has no root if Gb(0)(Hb (0), i.e. if

na4K
0

2
'

4 th b (b!coth b)

3b2 thb!b (1!sh2b) (1!2 sh2 b)#sh b ch b (1#4 sh2 b)
.

Finally, for u@ real, there is no eigenvalue j between 0 and 1 if

0(b(2)23918, (31)

as obtained by Strube (1992) and Capodanno (1995) for rigid disks; setting

2

¹

"

1

¹
1

#

1

¹
2

and then

K
0
"

4¹

naa4 ch4b
,

this gives

¹

a
'

2 th b ch4 b(b!cothb)

3b2 th b!b(1!sh2b) (1!2 sh2 b)#sh b ch b(1#4 sh2 b)
, (32)

which is a new result.
Inequality (32) is obviously verified if 0(b(1)9997. If 1)9997(b(2)23918, it ex-

presses that the ratio between the harmonic mean of the tensions of the membranes and the
surface tension must be sufficiently high. We have plotted the curve which represents the
right-hand side K(b) of equation (32) for 0(b(2)23928 and calculated a few values of this
function, as shown in Figure 2.

Let us consider now the case u@"iX@, with X@ real, obviously different from zero. We
have j"1#tg2 X@ and the corresponding eigenvalues j are strictly greater than one,
where tg is an abbreviation for tangent (tan). We are going to show that we can determine
these eigenvalues graphically. As in the last case that we have studied, replacing thu@ by
i tg X@, we obtain

(A!B)[(i tg X@#thb)e~*b 5'X{
!(i tgX@!th b)eib 5'X{]"0.



Figure 2. The curve K(b) as a function of b, for 0(b(2)23928, with table giving some of the values.

b K (B)

0)5 !1)77077

1 !0)20106

2 2)90901

2)1 5)62546

2)2 24)32184
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We have a first group of eigenvalues by putting the bracketed expression equal to zero.
Setting tg X@"u'0, we find the equation

tg(bu)"!th b/u,

which has a denumerable infinity of roots u
n
: [(2n!1)]/2b(u

n
((nn/b), n"1, 2,2.

Then, we obtain the eigenvalues j"1#u2
n
.

The case A"B leads to an equation analogous to equation (30); setting again
tg X@"u'0, we obtain

G0b (u)"H0b (u), (33)

with

H0b (u)"!

9
2
[2#na4K

0
(1
4

sh 4b!b)]

u2#1
,

G0b (u)"
4na4K

0
ch4b

u/tg(bu)!thb
#(u2#1)!C

na4K
0

2
(3b#2 sh 2b#1

4
sh4b)!6D;

H0b (u) is negative and strictly increasing from !9
2

[2#na2K
0
(1
4

sh 4b!b)](0 to zero.
G0b (u) is strictly increasing and is infinite for u"u@

n
, (nn)/b(u@

n
([(2n#1)]/2b

(n"1, 2,2), roots of the equation tg(bu)"u/thb.
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On the other hand, the difference

G0b (0)!H0b (0)"

16(1!b th b)#2na4K
0
[3b2 tg b!b(1!sh2b) (1!2sh2b)#sh b chb (1#4sh2b)]

1!b thb

is positive if 0(b(1)9997 and negative if 1)9997(b(2)23918 by virtue of inequality
(32).

Thus, equation (33) has a denumerable infinity of roots uA
n
, u@

n
(uA

n
(u@

n`1
(n"1, 2,2 if

0(b(1)9997 and n"0, 1, 2,2, u@
0
"0 if 1)9997(b(2)23918), and the corresponding

eigenvalues are j"1#uA2
n

.
Finally, under conditions (31) and (32), the smallest eigenvalue of problem (24) is strictly

greater than one.
By the definition of j, we can write

PX

f2
s
#f2

z
ch2 (z/a)

dz ds#
¹

1
a P

S1

($f
1
)2 dS

1
#

¹
2

c P
S2

($f
2
)2 dS

2

5j PX

f2
a2 ch2(z/a)

dz ds ∀m3»,

with j'1. With 0(e(1, we have

M(m, m)"e CPX

f2
s
#f2

z
ch2(z/a)

dz ds#
¹

1
a P

S1

($f
1
)2 dS

1
#

¹
2

a P
S2

($f
2
)2 dS

2D
#(1!e) CPX

f2
s
#f2

z
ch2(z/a)

dz ds#
¹

1
a P

S1

($f
1
)2 dS

1
#

¹
2

a P
S2

($f
2
)2 dS

2D
!PX

f2
a2 ch2 (z/a)

dz ds.

Using the preceding inequality, we have

M(m, m)5e CPX

f2
s
#f2

z
ch2(z/a)

dz ds#
¹

1
a P

S1

($f
1
)2 dS

1
#

¹
2

a P
S2

($f
2
)2 dS

2D
#[(1!e) j!1] PX

f2
a2 ch2(z/a)

dz ds.

Since j'1, we can choose e such that the quantity between brackets is positive:
0(e((j!1)/j.

Therefore, it is possible to find a positive constant c so that

M(m, m)5cEmE2, ∀m3».

Finally, under conditions (31) and (32), the bilinear form M( . , . ) is coercive in ».

6. EXISTENCE OF THE EIGENFREQUENCIES OF THE SYSTEM

Let us consider again the variational equation of problem (19), i.e.

(m® , mI )
H
#aM(m, mI )"0, ∀mI 3».
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The bilinear form (M ( . , . ) is, obviously, symmetrical and continuous in »; under the
preceding two conditions, it is coercive in ».

On the other hand, it is easy to prove that the embedding »LH, which is dense by
construction, is continuous and compact. It is continuous, because the embeddings
H1

0
(S

i
)L¸2 (S

i
) (i"0, 1, 2) are continuous and K is a continuous operator in H.

Let us consider now a sequence MgnN3», which converges weakly for nPR to g3»,
and therefore, by the Rellich theorem, strongly to g in the space L; we have

Egn!gE2
H
4oEKE Egn!gE2H#o

1
Egn

1
!g

1
E2
L2 (S1)

#o
2
Egn

2
!g

2
E2
L2 (S2)

.

so that gn converges strongly to g in H. Consequently, the embedding »LH is compact.
Therefore, the problem is a standard vibration problem (Sanchez & Sanchez 1989), i.e.

there exists a denumerable infinity of positive eigenvalues

0(u2
1
4u2

2
424$u2

n
42 , u2

n
PR,

and the associated eigenfunctions m
1
, m

2
,2 m

n
,2 form an orthogonal basis inL and in »,

equipped with the scalar product M( . , . ).
We can add the following remark. For the numerical calculation of the eigenvalues by

means of the Rayleigh ratio

aM(m, m)

(m, m)
H

"

aM(m, m)

o (Km, m)
H
#o

1
Ef

1
E2
L2 (S1)

#o
2
Ef

2
E2
L2 (S2)

,

there is only one difficulty, because it is impossible, in general, to determine explicitly the
operator K. But we known that, for each m3», there exists /3HI 1(q), a weak solution of
a Neumann problem, such that (Km, m)H":

q
($/)2 dq, and it is well known that / can be

calculated approximately, for instance by the Rayleigh—Ritz method.

7. CONCLUSION

Under the simple conditions (31) and (32), we have prove the stability of the system of liquid
membranes and the existence of its eigenfrequencies. The first condition expresses that the
ratio between the distance of the centres of the disks and the neck radius of the catenoid be
sufficiently small, exactly smaller than 4)47836. The second condition is identically satisfied
if this ratio lies between zero and 3)994. If the ratio lies between 3)9994 and 4)47836, this
condition expresses that the ratio between the harmonic mean of the tensions of the
membranes and the surface tension must be sufficiently great.

We can obtain analogous results in the simpler case of the cylindrical bridge. It should be
interesting to study the cases of onduloidal and nodoidal bridges; however, these problems
will certainly lead to complicated calculations because of the presence of elliptic functions.
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